ABSTRACT

A radiographically lucent patellar lesion may represent a variety of etiologies, ranging from more commonly seen degenerative, metabolic, infectious, developmental, posttraumatic, postoperative causes to rarer benign and malignant neoplasms. Clinical symptoms, surgical history, laboratory values, and radiographic features may help narrow the differential. In addition, radiographic features such as circumscribed borders and sharply delineated margins favor benign lesions while ill-defined margins suggest malignant etiologies. This case series illustrates the imaging findings and explores relevant clinical findings in a variety of interesting lucent patellar lesions.

REVIEW

A radiographically lucent patellar lesion may represent a variety of etiologies, ranging from more commonly seen degenerative, metabolic, infectious, developmental, posttraumatic, postoperative causes to rarer benign and malignant neoplasms. Subchondral cysts or erosions along the patellar articular surface are often related to underlying arthropathy such as osteoarthritis, gout, calcium pyrophosphate deposition, rheumatoid arthritis, amyloidosis. Lytic bony destruction or Brodie’s abscess in osteomyelitis may also appear as patellar lucencies.

Patellar tumors are uncommon, and the majority are benign [1]. As the patella is considered an epiphyseal equivalent, its most common benign tumors are giant cell tumor (GCT) and chondroblastoma [1,2]. Rarer benign patellar tumors include osteoid osteoma, unicameral bone cyst, aneurysmal bone cyst, and enchondroma [1,2].

Although less common, primary malignant patellar tumors along with patellar metastatic lesions comprise up to one-third of patellar neoplasms, osteosarcoma and chondrosarcoma most frequently encountered [2,3]. Osseous lymphoma, malignant fibrous histiocytoma, and Ewing sarcoma may also occur in the patella [2-6].

Anterior knee pain is the primary clinical symptom of a patellar lesion, with benign etiologies tending towards gradual onset of pain and malignant lesions typically presenting more abruptly [2,7]. Serum inflammatory markers such as erythrocyte sedimentation rate and c-reactive protein may also provide additional information to categorize patellar lesions [8].

Additional information from the clinical history and laboratory values as well as further characterization with cross-sectional imaging are often helpful in narrowing the differential diagnosis. Benign tumors characteristically appear as geographic lesions with a sclerotic rim and sharply defined margins in contrast to malignant tumors with ill-defined borders without a sclerotic rim [2]. In addition, pathologic fractures are more common in malignant patellar tumors [2].
Giant cell tumor

Giant cell tumors are benign osseous tumors that comprise of up to 5% of bony tumors and up to 20% of benign bony tumors [8]. In addition, GCT represent up to 33% of patellar osseous neoplasms [1]. Although classified as benign, GCT may metastasize in up to 9% of cases, with the lungs as the most common site of spread [9].

Patients typically present with knee pain and swelling [2] and are over 20 years old [10].

Radiographs (Figure 1A) demonstrate a radiolucent geographic lesion almost always delineated by a non-sclerotic border [2,10]. GCT on MRI usually demonstrates T1 intermediate signal, T2 hypointensity, and heterogenous enhancement of solid portions [11]. GCT may also contain cystic components and up to 53% of GCT are associated with secondary aneurysmal bone cysts, which contain hemorrhage/ fluid components within cystic spaces [12]. Pathologically, osteoclast-like giant cells surrounded by sheets of neoplastic ovoid mononuclear cells are seen [8].

Chondroblastoma

Chondroblastoma is a benign cartilaginous tumor [2,12] with lower prevalence than GCT, as it comprises of less than 1% of bony tumors, less than 3% of benign bony tumors, and approximately 16% of patellar osseous neoplasms [1,13].

Contrary to GCT, chondroblastoma is usually seen in patients younger than the age of 20 [13]. Common presenting clinical symptoms are nonspecific, including pain and joint swelling.

Chondroblastomas on radiograph (Figure 2A) demonstrates a radiolucent geographic lesion outlined most often by a thin sclerotic border [2]. Chondroblastomas on MRI demonstrates a T1 intermediate lobulated lesion with heterogenous enhancement [14]. Similar to GCT, there is an association of chondroblastoma with secondary aneurysmal bone cysts [15]. Pathologically, chondroblasts with chondroid matrix, calcium deposition, and occasional giant cells are appreciated in chondroblastomas.

Osteoid osteoma

Osteoid osteoma is a benign tumor with a central lucent nidus surrounded by sclerosis. The size of an osteoid osteoma is typically less than 1.5 cm, with pathologically similar lesions greater than 2.0 cm classified as osteoblastomas [16]. Osteoid osteomas comprise of up to 5% of patellar osseous tumors [2].

The majority of patients presenting with osteoid osteoma are under the age of 25 [17]. Presenting symptoms are classically described as chronic pain accentuated at nighttime and relieved by non-steroidal analgesics [2].

Osteoid osteoma on radiograph and CT (Figure 3A and C) appears as a well-defined, geographic lesion with a central lucent nidus and surrounding sclerosis [16-19]. Pathologically the central nidus corresponds to osteoblasts and the periphery corresponds to woven bone and peripheral cortical sclerotic reaction [18,19].

Calcium pyrophosphate deposition disease

CPPD, also known as pseudogout, is the deposition of calcium pyrophosphate crystals within fibrocartilage and hyaline cartilage [20]. These crystals subsequently induce inflammatory and degenerative changes within the involved joints [20]. The majority of patients presenting with CPPD are over the age of 65 [21]. Common presenting symptoms include joint pain, swelling, erythema, and decreased range of motion [20,21].

Radiographic findings (Figure 4A) include chondrocalcinosis (the calcification of fibrocartilage and hyaline cartilage), degenerative osteophytosis, joint space narrowing, and subchondral cystic change [20,22]. Prolonged disease may result in osseous erosions [23]. However, the presence of chondrocalcinosis is not specific for CPPD, and may be seen in a variety of diseases, including hyperparathyroidism, degenerative joint disease, gout, and diabetes mellitis [22].

Gout

Gout is the systemic deposition of monosodium urate crystals with associated inflammatory changes around joints and tendons. It is present in up to 4% of the total population [24]. Gout classically presents as sudden monoarthritic pain, most common at the first metatarsophalangeal joint. It has been hypothesized that the predilection for gout at the first metatarsophalangeal joint is due to decreased monosodium urate solubility at the surrounding lower temperature of the foot [25]. Similarly, the superficial location of the patella may also result in a lower temperature that increases the likelihood of gouty tophus formation [25].

Patellar gout has also been associated with history of trauma, bipartite patella, and additional inflammatory disease [25]. Although patellar gout may be seen at both the quadriceps and patellar tendon attachments, the superolateral quadriceps attachment is more common [25].

The erosions of patellar gout on radiograph may mimic a lucent osseous lesion (Figure 5A and 6A), possibly benign and malignant patellar tumors, and other systemic metabolic manifestations, including CPPD and brown tumors from hyperparathyroidism [26]. However MRI will demonstrate characteristic bony erosion with adjacent heterogenous soft tissue extension (Figure 5B-C and 6B-C).

Osteochondral defect

Osteochondral defects represent a localized defect in the articular cartilage and associated subchondral bone [27]. The etiology can be acute secondary to trauma, chronic due to degenerative changes, or postsurgical.

Subchondral cystic changes have been hypothesized to be secondary to the inclusion of synovial fluid into the bony plate via cartilaginous defects of chondrosis [28]. In addition, subchondral marrow edema may also be present secondary to bony microdamage [29]. These cystic changes and marrow edema may simulate lucent areas (Figure 7A) on radiographs [30].
Disseminated Coccidioidomycosis

Coccidioidomycosis is an endemic fungus most prevalent in the Southwestern United States and Central America, as it more effectively survives in regions without significant rainfall or cold temperatures [31]. The spectrum of its disease manifestations ranges from asymptomatic colonization to fulminant disease, partly based on the immune competency of the host [31].

Up to 50% of patients presenting with disseminated disease demonstrate osseous involvement [32]. Although almost any bone in the body may be affected by disseminated coccidioidomycosis, the axial skeleton is more frequently involved [33,34].

Disseminated coccidioidomycosis on radiograph (Figure 8A) typically demonstrates multiple lytic lesions with circumscribed margins [33,34]. In addition, permissive osseous destruction with associated periosteal reaction may also be appreciated [33,34]. The corresponding coccidioidomycosis lesions on CT are usually expansile and hypodense while MRI demonstrates T1 hypointensity, T2 hyperintensity, and contrast enhancement [33].

The differentiation between fungal and bacterial osteomyelitis is often reliant on clinical history due to the relative rarity of fungal osteomyelitis. In general, the imaging appearance of bacterial infection tends to be more aggressive with osteolysis, bone destruction, marrow edema, and periosteal reaction whereas fungal infection demonstrates a more indolent appearance.

Dorsal patellar defect

Dorsal patellar defect is a normal developmental anomaly that at times may be mistaken for pathology. The average age of presentation is 15 years with up to one-third of the cases presenting bilaterally [35]. This lesion is typically seen as an incidental finding, although at times knee pain may be associated. Most dorsal patellar defects resolve spontaneously with gradual sclerotic fill-in [35].

Dorsal patellar defect on radiograph (Figure 9A-B) occurs as a characteristic circumscribed lucency in the superolateral patella with a sclerotic rim [35]. On MRI (Figure 9C-D), there is a corresponding subcortical osseous defect with preserved articular cartilage [35].

Metastatic disease

Metastatic disease to the patella is extremely rare, accounting for less than 0.01% of all osseous tumors [1]. It is even less frequent than primary tumors of the patella [36]. The scarcity of patella metastatic disease may be due in part to its relatively sparse vascular supply [37]. The most common site of primary cancer for patellar metastases is the lung, followed by kidney, colon, and skin [36]. Squamous cell carcinoma and adenocarcinoma are the most common subtypes for primary lung cancer with metastases to the patella [36].

Radiographic features of patellar metastases depend on the primary cancer. Common findings include lytic lesions (Figure 10) with possible superimposed pathologic fracture and periosteal reaction [36]. However, imaging may be insufficient to differentiate between primary patella tumor and metastatic disease, and biopsy may be required.

Postoperative change

Sutures through trans-osseous patellar bone tunnels is one of the main techniques for the current repair of acute quadriceps tendon rupture [38]. Figure 12 illustrates a schematic for the trans-osseous tunnels traversing the patella in a longitudinal direction. Quadriceps tendon rupture usually occurs in patients over the age of 40 and in patients with predisposing factors including chronic steroid therapy, diabetes mellitus, and systemic lupus erythematosus [39]. Complications after trans-osseous suture repair include re-injury of the quadriceps tendon, postoperative patellar stress fractures, and additional general postoperative complications such as infection and deep venous thrombosis [40].

An anterior exit direction of trans-osseous patellar drill holes has been hypothesized to increase the risk of postoperative patellar fracture, although studies to evaluate this have been limited [40]. In addition, longitudinal patellar drill holes may have increased stress due to their increased length [40].

Postoperative cystic expansion adjacent to the trans-osseous tunnels (Figure 11) or the tunnels themselves may simulate a lucent patellar lesion on radiographs. Surgical history or further investigation on cross-sectional imaging may assist in making the diagnosis.

TEACHING POINT

A radiographically lucent patellar lesion may represent a variety of etiologies, ranging from more commonly seen degenerative, metabolic, infectious, developmental, posttraumatic, postoperative causes to rarer benign and malignant neoplasms. Radiographic features such as circumscribed borders and sharply delineated margins favor benign lesions while ill-defined margins suggest malignant etiologies.

REFERENCES

Figure 1: Giant Cell Tumor

85-year-old male with history of prostate cancer and gout with patellar giant cell tumor demonstrated on biopsy. He presented with 4 weeks of left knee pain without history of trauma.

Findings:
Expansile lucent patellar lesion with narrow zone of transition (arrow) and a minimally displaced pathologic fracture through the lesion.

Technique:
A) Sunrise view left knee radiograph and B) Left knee axial T1 MRI (GE Signa 1.5T; TR 3500; TE 17; slice thickness 4 mm; without contrast).
Radiology Case Reports

Figure 2: Chondroblastoma
26-year-old male with gradual onset right knee pain with patellar chondroblastoma shown on biopsy.

Findings: Patellar geographic multilobulated lytic lesion with narrow zone of transition and sclerotic border. There is endosteal scalloping along the anterior cortex of the patella.

Technique: A) Right knee sunrise radiograph. B and C) Right knee proton-density sagittal and T2 axial fat-suppressed MRI (Siemens Skyra 3T; sagittal proton-density: TR 2240; TE 12; slice thickness 3 mm; and axial T2: TR 4890; TE 73; slice thickness 3 mm; without contrast).

Figure 3: Osteoid Osteoma
33-year-old female with right knee pain for a few months and imaging findings consistent with osteoid osteoma.

Findings: Subtle subchondral sclerosis along the lateral patellar facet on radiograph that corresponds to a focal subchondral area of edema on MRI and demonstrated a punctate lucency within subchondral bony sclerosis on CT consistent with an osteoid osteoma.

Technique: A) Right knee sunrise radiograph. B) Axial T2 fat-suppressed MR of the right knee (Siemens Skyra 3T; TR 3700; TE 53; slice thickness 3 mm; without contrast). C) Axial CT of the right knee (Siemens Sensation; kVp 120; mA 406; slice thickness 3 mm; without contrast).
Figure 4: *Metabolic disease - Calcium Pyrophosphate Deposition Disease*

69-year-old female with 2-week history of lateral knee pain without trauma and imaging findings consistent with calcium pyrophosphate deposition disease.

Findings: Chondrocalcinosis with lucent irregularity along the lateral patella (arrow) that corresponds to focal erosion on MRI. Findings are consistent with calcium pyrophosphate deposition disease.

Technique: A) Left knee sunrise radiograph. B) Left knee axial T2 fat-suppressed MRI (GE Signa Architect 3T; TR 5555; TE 122; slice thickness 4 mm; without contrast).

Figure 5: *Gout*

78-year-old female with history of gout presenting with left knee pain and imaging findings consistent with gout.

Findings: Subtle lucency along the superior patella (arrow) with adjacent mineralization. Corresponding erosion seen on MRI with heterogenous material extending from the area of erosion into the distal quadriceps tendon and prepatellar bursa compatible with tophaceous gout.

Technique: A) Lateral left knee radiograph. B and C) Sagittal proton-density and sagittal T2 fat-suppressed left knee MRI (Siemens Skyra 3T; sagittal proton-density - TR 2000; TE 10; slice thickness 4 mm; and sagittal T2- TR 3700; TE 57; slice thickness 4 mm; without contrast).
Figure 6: Gout
71-year-old male with right knee pain and imaging findings consistent with gout.

Findings: Subtle lucent area about the anteroinferior patella (arrow) that corresponds to erosive changes at the attachment of the patellar tendon and heterogenous material extending from the area of bony erosion into the proximal patellar tendon compatible with tophaceous gout.

Technique: A) Lateral right knee radiograph. B and C) Sagittal proton-density and T2 MRI of the right knee (Siemens Skyra 3T; sagittal proton density - TR 3000; TE 34; slice thickness 3 mm; and sagittal T2 - TR 3600; TE 94; slice thickness 3 mm; without contrast).

Figure 7: Degenerative change - Osteochondral defect
55-year-old male presenting with gradual onset left knee pain and imaging findings consistent with an osteochondral defect.

Findings: Subchondral lucency within the medial patellar facet, without significant joint space narrowing. Corresponding full-thickness osteochondral defect within the medial patellar facet with surrounding reactive edema.

Technique: A) Left knee sunrise radiograph. B) Axial T2 fat-suppressed MRI of the left knee (Siemens Skyra 3T; TR 4780; TE 71; slice thickness 4 mm; without contrast).
Figure 8: Infectious disease - Disseminated Coccidioidomycosis
60-year-old male with history of coccidioidomycosis fungemia presenting with right knee pain and imaging findings consistent with osseous coccidioidomycosis.

Findings: Lucent area about the anteroinferior patella (arrow) that corresponds to a T2 hyperintense lesion with exuberant surrounding marrow edema compatible with disseminated fungal infection.

Technique: A) Lateral right knee radiograph. B and C) Sagittal and axial T2 fat-suppressed MRI of the right knee (Siemens Sonata 1.5T; sagittal T2 - TR 3230; TE 85; slice thickness 4 mm; and axial T2 - TR 5720; TE 91; slice thickness 4 mm; without contrast).

Figure 9: Developmental variant - Dorsal patellar defect
31-year-old female with history of right knee pain with imaging findings consistent with dorsal patellar defect.

Findings: Lucent area with a sclerotic rim within the subcortical lateral patella facet (arrow) that corresponds to a subcortical bone plate irregularity with preserved overlying cartilage consistent with dorsal patellar defect.

Technique: A and B) Sunrise and AP right knee radiographs. C and D) Axial T2 and sagittal proton density fat-suppressed MRI of the right knee (Siemens Skyra 3T; axial T2 - TR 4660; TE 63; slice thickness 4 mm; and sagittal proton density - TR 3500; TE 10; slice thickness 3 mm; without contrast).
Figure 10: Metastatic disease
60-year-old male with history of metastatic lung adenocarcinoma with right knee pain and metastatic lung adenocarcinoma of the patella shown on biopsy.

Findings: Ill-defined lucent area within the lateral patella that corresponds to a lytic lesion with wide zone of transition and increased F18-FDG uptake (SUV max 6.7) on PET/CT. MRI demonstrates an expansile, enhancing mass with associated cortical loss and extraosseous soft tissue extension.

Technique: A) Lateral right knee radiograph. B and C) Axial PET/CT (Siemens Biograph; 8.5 mCi F18-FDG; 45 minutes injection time; kVp 120; mA 201; slice thickness 3 mm; without contrast). D and E) Axial T2 fat-suppressed and contrast enhanced T1 fat-suppressed MRI of the right knee (Siemens Aera 1.5T; axial T2 - TR 5580; TE 84; slice thickness 3 mm; and contrast enhanced T1 - TR 600; TE 18; slice thickness 3 mm; 7.5 mL Gadobutrol). F) Sagittal T2 fat-suppressed MRI of the right knee (Siemens Aera 1.5T; TR 4330; TE 84; slice thickness 3 mm; 7.5 mL Gadobutrol).

Figure 11: Postoperative change - Status post quadriceps tendon repair with trans-osseous patellar bone tunnels sutures
59-year-old male with history of right quadriceps tendon repair approximately twenty years prior presenting with knee pain with imaging findings consistent with postoperative changes.

Findings: Lucent area within the posteroinferior patella (arrow) that corresponds to intraosseous cystic changes around the repair sutures seen on both CT and MRI.

Technique: A) Lateral right knee radiograph. B) Sagittal CT of the right knee (Siemens SOMATOM Force; kVp 120; mA 66; slice thickness 1 mm; 100 mL Iodixanol). C and D) Sagittal T2 and Axial T2 fat-suppressed MRI of the right knee (Siemens Aera 1.5T; sagittal T2 - TR 4330; TE 90; slice thickness 3 mm; and axial T2 - TR 5580; TE 84; slice thickness 4 mm; without contrast).
Figure 12 (left): Illustration for trans-osseous tunnels (red) and sutures (blue) in the setting of quadriceps tendon repair.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Clinical presentation</th>
<th>Radiograph findings</th>
<th>CT findings</th>
<th>MRI findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chondroblastoma</td>
<td>Knee pain and swelling. Typically under the age of 20.</td>
<td>Lucent geographic lesion with thin sclerotic border.</td>
<td>Lucent geographic lesion with thin sclerotic border.</td>
<td>T1 intermediate. T2 variable. Heterogenous enhancement.</td>
</tr>
<tr>
<td>Osteoid Osteoma</td>
<td>Chronic knee pain accentuated at nighttime and relieved by non-steroidal analgesics. Typically under the age of 25.</td>
<td>Well-defined, geographic lesion with a central lucent nidus and surrounding sclerosis.</td>
<td>Well-defined, geographic lesion with a central lucent nidus and surrounding sclerosis.</td>
<td>Nonspecific.</td>
</tr>
<tr>
<td>CPPD</td>
<td>Knee pain and swelling. Typically over the age of 65.</td>
<td>Chondrocalcinosis, degenerative osteoarthropathy, joint space narrowing, and subchondral cystic change.</td>
<td>Chondrocalcinosis, focal erosion, degenerative osteoarthropathy, joint space narrowing, and subchondral cystic change.</td>
<td>Focal erosion.</td>
</tr>
<tr>
<td>Gout</td>
<td>Acute monoarthritic pain.</td>
<td>Focal lucent area and chondrocalcinosis.</td>
<td>Focal erosion and chondrocalcinosis.</td>
<td>Focal erosion.</td>
</tr>
<tr>
<td>Osteochondral Defect</td>
<td>Can be degenerative or secondary to trauma.</td>
<td>Focal lucent area with possible subchondral sclerosis.</td>
<td>Focal lucent area with possible subchondral sclerosis.</td>
<td>Focal lucent area with possible subchondral edema.</td>
</tr>
<tr>
<td>Disseminated infection</td>
<td>Coccidiodomycosis more frequently involves the axial skeleton.</td>
<td>Multiple lucent lesions with circumscribed margins.</td>
<td>Expansile and hypodense lesions.</td>
<td>T1 hypointense. T2 hyperintense. Variable enhancement. Marked surrounding edema.</td>
</tr>
<tr>
<td>Dorsal patellar defect</td>
<td>Possible knee pain. Average age of presentation of 15. One-third of cases are bilateral.</td>
<td>Characteristic circumscribed lucency in the superolateral patella with a sclerotic rim.</td>
<td>Characteristic circumscribed lucency in the superolateral patella with a sclerotic rim.</td>
<td>Subcortical osseous defect with preserved articular cartilage.</td>
</tr>
<tr>
<td>Metastatic disease</td>
<td>Extremely rare. Most common primaries include lung, renal, colon, and melanoma.</td>
<td>Lytic/sclerotic lesion depending on primary malignancy with possible pathologic fracture and periosteal reaction.</td>
<td>Lytic/sclerotic lesion depending on primary malignancy with possible pathologic fracture and periosteal reaction.</td>
<td>Variable depending on primary malignancy.</td>
</tr>
<tr>
<td>Intraosseous tendon repair with cystic postoperative change</td>
<td>History of surgery. Quadriceps tendon rupture usually occur in patients over the age of 40.</td>
<td>May mimic lucent lesion on radiograph.</td>
<td>Postoperative changes.</td>
<td>Postoperative changes.</td>
</tr>
</tbody>
</table>

Table 1: Summary table of lucent patellar lesions.
ABBREVIATIONS

CPPD = Calcium pyrophosphate deposition disease
CT = Computed tomography
GCT = Giant cell tumor
MRI = Magnetic resonance imaging

KEYWORDS

Patella; MRI; CT; giant cell tumor; chondroblastoma; osteoid osteoma; gout; osteochondral defect; disseminated coccidioidomycosis; metastases; dorsal patellar defect

Online access
This publication is online available at:

Peer discussion
Discuss this manuscript in our protected discussion forum at:
www.radiolopolis.com/forums/JRCR

Interactivity
This publication is available as an interactive article with scroll, window/level, magnify and more features.
Available online at www.RadiologyCases.com

Published by EduRad

www.EduRad.org